Lecture 8 - Sep 29

<u>Graphs</u>

Basic Definitions
Properties: Degrees, Number of Edges
Mathematical Induction on Vertices

Announcements/Reminders

- First Class (Syllabus) recording & notes posted
- Today's class: notes template posted
- Exercises:
 - + Tutorial Week 1 (2D arrays)
 - + Tutorial Week 2 (2D arrays, Proving Big-O)
 - + Tutorial Week 3 (avg case analysis on doubling strategy)
 - + Tutorial Week 4 (Trinode restructuring after deletions)

N={A,B,C,D,E,T} E={(A,B),(A,C),(A,E), **Graph:** Definition

self edge/loop: (u, u) multiple/parallel edges: (u, v) (u, v) Simple Ewaph: graph without self and parallel eages.

Not simple graph: graph has self edges or parallel eages.

Given a **simple**, **undirected** graph G = (V, E) with |E| = m:

$$\sum_{v \in V} \text{degree}(v) = 2 \cdot \boxed{V}$$

Vertex	Vagree 2	
A	3	
В	2 (E)	
	2 m	
D	2	
E	2	
F	3	

Given a simple, undirected graph G = (V, E) with |E| = m:

$$\sum_{v \in V} degree(v) = 2 \cdot m$$

trategy of Proof: Perform a M.I. on IV

Given a **simple**, **directed** graph G = (V, E) with |E| = m:

$$\sum_{v \in V} in-degree(v) = \sum_{v \in V} out-degree(v)$$

Nevtex	m-degree	ant-degree
A	1 0	2
B	Z	7
C	7	7
D	7	7
E	7	7
F	2	Z

Given a **simple**, **directed** graph G = (V, E) with |E| = m:

$$\sum_{v \in V} in-degree(v) = \sum_{v \in V} out-degree(v)$$

Given a **simple**, **undirected** graph G = (V, E), |V| = n, |E| = m:

$$m \le \frac{n \cdot (n-1)}{2} \longrightarrow \# \text{ of edges} is O(|V|^2)$$

Netex edges a connected other with the (A,B), (A,C), (A,D), (A,E) were all (B,A), (B,C), (B,D), (B,E), (B,E), (C)

Given a simple, undirected graph
$$G = (V, E)$$
, $|V| = n$, $|E| = m$:

$$m \le \frac{n \cdot (n-1)}{2}$$

When
$$m = \frac{n \cdot (n-1)}{2}$$

Given a **simple**, **undirected** graph G = (V, E), |V| = n, |E| = m:

$$m \leq \frac{n \cdot (n-1)}{2}$$