
Lecture 8 - Sep 29

Graphs

Basic Definitions
Properties: Degrees, Number of Edges
Mathematical Induction on Vertices



Announcements/Reminders

• First Class (Syllabus) recording & notes posted
• Today’s class: notes template posted
• Exercises: 

+Tutorial Week 1 (2D arrays)
+ Tutorial Week 2 (2D arrays, Proving Big-O)
+ Tutorial Week 3 (avg case analysis on doubling strategy)
+ Tutorial Week 4 (Trinode restructuring after deletions)
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Edges: Directed vs. Undirected

Examples:
• Control Flow/Data Flow Diagrams
• Social Network of Friendships
• Road Map of GPS
• Collaboration Network (Co-authorship)
• Degree Requirement
• Web Pages (Hyperlinked)
• Protein-Protein Interaction Network
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Simple Graph : graph without self and parallel edges
not simple graph : graph has self edges o parallel edges.



Vertices: Degree

Exercises:
End vertices of m?
Outgoing Edges of A?
Incoming Edges of A?
Edges incident on A?
Degree of A?
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Properties: Sum of Degrees for Undirected Graphs
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Properties: Sum of Degrees for Undirected Graphs
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Properties: Sum of Degrees for Directed Graphs
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Properties: Sum of Degrees for Directed Graphs



Properties: Sum of Degrees for Directed Graphs
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Properties: Sum of Degrees for Directed Graphs


